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Abstract--General mathematical expresstons are presented for (1) the view factor to only the primary 
image of one surface as seen by another surface in a nonplanar specular reflector, and (2) the view factor 
to secondary images in a multiple imaging situation involving nonplanar specular reflectors. Vector notation 
is used to present the general formulations that are independent of a specific coordinate system. The 
resulting expressions are conceptually simple and are identifiable with the commonly known expression 
for the view factor between diffuse surfaces. The formulations extend the application of the “method of 
images” to enclosures containing specular surfaces of arbitrary topography. Two examples are given which 

illustrate the use of the general expressions. 

NOMENCLATURE $ total number of reflections in a pattern ; 
length of raypath between source and :, surface points defining the vectors V ; 
receiver ; PY number of reflectors in enclosure ; 
incremental area on source or receiver V, vector representing length and direc- 
surfaces ; tion of a ray ; 
view factor between two incremental 8, angle between ray and source or re- 
areas ; ceiver normals ; 
triple product vector equations ; PT reflectance ; 
dot product vector equations ; 4, incident or reflection angle on reflec- 
function defining surfaces of enclosure tors. 
(Part B) ; 
function defining surface of source, 

Subscripts, Part A 
1 

reflector, or receiver (Part A); 
radiant flux ; 
total number of patterns; 
maximum size of n ; 
vector denoting surface normal ; 

2: 

receiver surface ; 
source surface ; 
image of source ; 
angle of incidence c$; ; 
reflector ; 
angle of reflection 4,. 

* This paper presents the results of one phase of research 
carried out at the Jet Propulsion Laboratory, California 

Subscripts, Part B 

Institute of Technology, under Contract No. NAS 7-100, si> reflector identification; 

soonsored bv the National Aeronautics and Soace Adminis- S n + r, receiver identification ; 
tiation. - S 03 source identification. 

i Senior Research Enaineers. ADDlied Mechanics Section. 
Jet Propulsion Laboratory, Cali~dmia Institute of Tech- 
nology, Pasadena, California. 

Superscripts, Part B 

$ Applies only to Parts A and B of Section 2. Nomen- in identification of reflection in pattern ; 

clature in examples (Section 3) is self-explanatory. % pattern identification. 
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1. INTRODUCTION 

THE DETERMINATION of view functions, and con- 
sequently, view factors, is essential in the calcula- 
tion of radiant heat transfer between surfaces. 
In simple calculations, a numerical value repre- 
senting that portion of the radiant energy 
leaving one surface and incident upon another 
is called the view factor (or the angle factor or 
configuration factor). For complex calculations 
where local radiant heat-transfer variations are 
taken into account, a function representing that 
portion of radiant flux leaving one elemental 
area and incident upon another is called a view 
function. The view factor results from the 
integration of a view function over the areas of 
the surfaces involved. 

Because the mathematical formulations for 
real surface radiant heat exchange are complex 
and the subsequent solutions are difficult, a 
number of simplifying idealizations are generally 
necessary. These idealizations are related to the 
nature of the interaction of thermal radiation 
with a surface and usually pertain to (1) the 
spatial distributions of reflected and emitted 
radiation in the half-space above a surface, and 
(2) the dependence of surface properties on 
wavelength. In radiative analysis two alternative 
ideali~tions prevail regarding the spatial distri- 
butions of emitted and reflected radiation: a 
surface is idealized as either diffuse (Lambertian) 
or specular (mirror-like). With the diffuse ideali- 
zation, the spatial distributions of both emitted 
and reflected radiation are Lambertian. For the 
specular case, emitted radiation is also Lam- 
bertian in distribution; however. the spatial 
distribution of reflected radiation obeys the 

“law of reflection” for optically smooth surfaces. 
Until recently, analyses have been based 

almost exclusively upon the diffuse idealization, 
due to the fact that no conceptually simple 
analytical technique had been formulated for 
applying the specuiar idealization. In spacecraft 
technology where radiant heat transfer plays a 
dominant role, it has now been recognized that 
radiant heat transfer between surfaces of a 
specular character is perhaps the more common 

situation, and a number of papers dealing with 
the specular idealization have appeared in the 
literature [l-63. These papers describe analytical 
techniques for handling the more computation- 
ally difficuit specular idealization, as well as 
comparative data demonstrating that important 
differences can occur when computations are 
based on one or the other of the two idealiza- 
tions. Papers published to date deal only with 
planar and axially symmetrical enclosures in- 
volving just the internal surfaces of cylinders 
and cones, 

Among the analytical techniques for handling 
the specularly idealized situation is the “method 
of images” [l, 21. The imaging technique 
considers the radiation reflected from a specular 
surface as having originated from the image of 
the source of that radiation, with the imaged 
surface appearing as a diffuse source of radi- 
ation. Thus, calculations used for the radiant 
heat-transfer within an enclosure containing 
specular reflectors are similar to those applied 
to entirely diffuse enclosures. Therefore the 
contribution of specularly reflected radiation to 
the radiant heat transfer can be accounted for 
by determining the view factors to the images 
formed in the specular reflectors of the enclosure. 
Since the images are treated as diffuse sources of 
radiation, the usual expression for the view 
factor applies, but the expression must be 
m~tipli~ by the reflectance of the reflector to 
account for attenuation in intensity resulting 
from absorptance by the reflector. The resulting 
general expression for the view factor to an 
image in a specular reflector is (Fig. 1) : 

cos 81 cos e; 
dA, dF,_2s = pr xD2_ -dAr dA;, (1) 

1 

where dF 2t the incremental 
dA, the image of dA, ; dA, is an incremental 
area on surface 1; dA; is an incremental area on 
the image of surface 2 (the prime denotes image) 
corresponding to a homologous incremental 
area dA, on surface 2; D,_,. is the distance 
between dAr and dA; ; 8, is the angle formed by 
the normal at dA, and the vector from dAl to 
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dA; ; f& is the angle formed by the normal at 
dA; and the vector from dA; to dAl ; and p, is 
the reflectance of the reflector. 

When the specular reflector is a planar surface, 
the application of equation (1) is straightforward, 

FIG. 1. An arbitrary arrangement of three surfaces, one of 
which is a specular reflector. 

since the location, size, and shape of the image 
can readily be obtained. However, when the 
specular reflector is nonplanar, these parameters 
are more difficult to determine. The use of 
simple geometric optics in the non-planar case 
would require ray-tracing to locate and to 
thoroughly describe an image. Since this ap- 
proach would be exceedingly difficult and time- 
consuming, it is the purpose of this paper to 
present a general analytical technique for 
determining the view factor to an image in a 
nonplanar specular reflector. 

The derivation of general expressions is 
presented in two parts: (1) the formulation for 
the view factor to only the primary image of one 
surface as seen by another in a specular reflector ; 
and (2), the formulation for the view factor to 
any secondary image that could be formed by 
multiple reflection. In addition, a sample prob- 
lem involving only a single reflection, and thus 
only a primary image, is presented, and numeri- 
cal results are given. Finally, a specific problem 
involving multiple reflection is included to 
illustrate the application of the general expres- 
sions to secondary images. 

2. DERIVATION OF GENERAL EXPRFSSIONS 

As was pointed out by Lin and Sparrow [7], 
an essential step in the analytical formulation of 
expressions for the view factor to an image in a 
nonplanar reflector is the determination of the 
relationships between the points of origin, 
reflection, and final incidence of a ray leaving a 
source surface, being specularly reflected, and 
finally arriving at a receiver surface. To achieve 
this, a vector representation of a typical reflection 
pattern within an enclosure is used here. The 
use of vector analysis allows the laws of reflection 
for specular surfaces to be represented in a 
general form independent of the coordinate 
system of the enclosure, thus leading to a con- 
ceptually simple general formulation. 

A. View factor to the primary image 
The simplest case involving the reflection of 

radiation from a nonplanar specular surface is 
that for which only a single reflection is con- 
sidered ; thus, only the view factor to the primary 
image is sought. For such a situation, consider 
an arbitrary arrangement of three surfaces, one 
of which is a specular reflector, as shown in Fig. 1. 

In Fig. 1, a ray emitted from dA, at point P,, 
striking the reflector at point P,, and incident 
upon dA, at point P,, will, as seen from P,, 
appear to have originated at a point Pi, at a 
distance IV;,/ in back of the reflector. Point P; 
is the image of point P,. Therefore, if one 
considers an elemental area dA;, located at Pi, 
whose normal is &, relative to V;,, then the 
view function from dA, to dA; is given by 
equation (1). If dA; is the image of dA,, then as 
dA, + 0, the principles of geometric optics for 
planar surfaces apply to these incremental areas, 
so that : 

cos e; = cos f&, 

Iv;,1 = ILl, 

dA; = dA,. 

(2) 

Thus, the view function to the primary image of 
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A2 becomes 
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cos 6, cos 8, 
dA, dP,-2, = P~~(~V,,~ + IV,,l)z dAr d&l (3) 

where D, 2f equation (1) has been replaced 
by the sum of and (V,,l. The cosine terms 
appearing in equation (3) can obtained 
the following vector dot products 

cos (-Vr,)*(Nd 
l (V,I( INI\ 

and 

cos 8 = (V,,) - (NJ 

* IV,,1 IN21’ 

(4) 

Furthermore, if surfaces 1 and 2 are defined by 
the equations HI (tl, T2, &) = 0 and H2 (tl, t2, 
<J = 0, respectively, then : 

N1 = Grad H, = VH,, 

N, = Grad H, = VH,, 

(NI[ = lVH& 

! 

(5) 

and IN21 = IVH,I. 

Since the vectors V,, and Vrl are defined by 
the reflection point P,, the evaluation of the 
view function to the image of dA2 requires a 
knowledge of the relationship between the co- 
ordinates of P, and the points P, and P,. One 
constraint on the coordinates of P, is that P, 
must be on the surface of the reflector which is 
defined by the equation H, (tl, r2, c&) = 0. The 
remaining constraints are obtained from the 
“law of reflection” [S] which requires that : 

1. the incident angle 4, must equal the reflec- 
tion angle c$* ; or cos f$; = cos c#J,, so 

(V2,) * NJ + (Vrd * (NJ _ o. 

IV,rI INrl jV,,I INI - ’ 
(6) 

2. the incident ray, reflected ray, and normal 
at P, must be coplanar, so that 

N;(V,, x V,,) = 0. (7) 

Note that equation (3) can be rewritten in the 
vector form using appropriate substitutions of 
equations (4) and (5). 

and T. E. HORTON 

The view factor to the image of surface 2 as 
seen from surface 1 is obtained by integrating 
equation (3) over the appropriate limits. The 
limits of integration over surfaces 1 and 2 are 
conditional. Two general conditions, or their 
combination, that might occur are : 

The image of surface 2 is not completely 
contained, as viewed from surface 1, within 
the boundaries of the reflector; in this case, 
the integration is bounded by the physical 
boundaries of the reflector, and thus the 
integration is over that portion of A, that 
A l  can see as imaged. 
The image of surface 2 as seen from surface 
1 is completely contained within the bound- 
aries of the reflector; in this case, the 
integration is over the entire areas of 
surfaces 1 and 2. 

B. View factor to secondary images 
The development thus far is useful only in 

determining the view factor to primary images, 
i.e. images that result from a single specular 
reflection between the receiver and the source. 
However, for an enclosure having one or more 
specular surfaces of such geometry or so ar- 
ranged that many specular reflections are pos- 
sible in the transmission of radiant energy from 
the source to the receiver, a means for determin- 
ing view functions, and thus view factors, to 
secondary images is required. 

The principal difficulty in developing a general 
procedure to determine view functions to 
secondary images is that of accounting-both 
systematically and mathematically-for all inter- 
reflections and resulting images. If the develop- 
ment is limited to enclosures containing a finite 
number of specular surfaces p, each of which is 
defined by a continuous function, then each 
specular surface can be uniquely identified by a 
number from the set 1, 2, 3, . . ., p. A particular 
ordering of numbers from the set 1, 2, 3, . . ., p, 
designating the sequential ordering of reflec- 
tions among the specular surfaces in the trans- 
mission of radiation from the source to the 
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receiver would result in one or more particular 
images of the source. This sequential ordering 
of numbers from the set 1,2,3,. . ., p will be 
referred to as a pattern. For example, the 
following sequential ordering of numbers 1,8,6,3 
would define a pattern of specular reflections, in 
chronological order, from the source to specular 
surfaces 1, 8, 6, and 3 and then to the receiver. 
Since the sequential ordering of reflections from 
the finite set 1, 2, 3, . . ., p can involve repetitious 
use of any or all numbers from the set, the 
number of reflections can be infinite; thus, the 
possible number of patterns can be infinite. 
Since the number of possible patterns is large, a 
number from another set of numbers 1,2,. . ., co 
will in turn be used for the identification of a 
particular pattern ; i.e. a number from the second 
set will denote a particular sequential ordering of 
numbers from the set 1,2, 3, . . ., p. 

The symbol a will be used as a general desig- 
nation of the identification number for a pattern ; 
i.e. a is a general designation of a number in the 
set 1,2,. . ., co. In a particular pattern, the number 
of reflections between the source and the receiver 
will be denoted by’n where n = 1,2,. . ., CCL Any 
particular reflection will be denoted by i where 
i = 1, 2, . . ., n. Associated with the ith reflection 
is a specular surface identification number from 
the set 1, 2, 3, . . ., p. This surface identification 
number will be symbolically represented by Si. 

Using the latter symbols, any ray reflected 
between two specular surfaces and the co- 
ordinates of any reflection point in a pattern can 
be accounted for by the use of a double subscript 
and superscript notation. Thus the vector 
V$i,,,i represents a ray in the ath pattern 
occurring at the ith reflection in the chronology 
of the pattern. The origin of the vector occurs 
on the specular reflector identified by Si- 1 and 
its terminus by Si. A similar notation for the 
reflection points defining this vector and the 
coordinates of the reflection points can be used. 
The terminus point of the vector would be Pti, 
or in terms of generated coordinates, this point 
is (<T& c?i,, &,) while the origin of the vector 
is P”,;!;’ or (55:;:!,, r;:\;!,. 5,“,$;f,). The 

2u 

symbols SO and S,+ 1 will denote the source and 
receiver surfaces, respectively. 

In general, for a pair of source and receiver 
surfaces, the maximum number M of patterns 
for an arbitrary enclosure of p number of 
specular surfaces is given by the expression : 

M = $, (P)“, 

where m is the maximum number of reflections 
which contribute to the radiant heat transfer 
between the source surface and the receiver 
surface. Note that m is not necessarily the 
maximum number of possible reflections but, 
rather, an imposed arbitrary limit; also, the 
maximum number of patterns given by equation 
(8) does not take into account the arrangement or 
topography of the specular surfaces in the 
enclosure. Thus, for a specific configuration, 
certain patterns are likely to be physically 
impossible because of surface arrangement or 
topography. For example, if a specular surface 
is planar or convex, those patterns which require 
two or more consecutive reflections are physic- 
ally impossible. 

To illustrate the application of the notation 
introduced thus far, consider an enclosure 
containing two specularly reflecting surfaces 
limited to a maximum of four reflections for a 
pattern. Such an enclosure is illustrated in 

REFLECTOR I 

REFLECTOR 2 

FIG. 2. Diagram illustrating notation for several patterns 
using a two-specular surface configuration. 
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Fig. 2, where S,, and S,, 1 are arbitrary source 
and receiver surfaces, respectively. From equa- 
tion (8). the maximum number of patterns M 
for m = 4 is 30. The number of patterns for 
n = 1,2,3, and 4 reflections is shown in Table 1. 
The sum is, of course, 30. This table clearly 
shows the correlation between the rapid in- 
crease in M with the increase in maximum 
reflections m. A tabulation of the pattern 
number a against the sequence of the chrono- 
logical surfaces in the propagation of the pattern 
and the associated sequence of vectors is 
shown in Table 2. 

Table 1. Number of patterns OS. number of reflections n in 
each patternfor two specular surface enclosures 

Number of 
reflections 

in pattern, n 

Number of 
patterns 

1 2 
2 4 
3 8 
4 16 

30 = M 

The rays shown in Fig. 2 represent the inter- 
reflection pattern for patterns 14 and 28 of 
Table 2. 

In an arbitrary enclosure containing one or 
more specular surfaces. the number of possible 
patterns can be very largeeven infinite. For 
such situations, a limit on the number of 
reflections, and thus the number of possible 
patterns, is necessary for practical reasons. 
One means of imposing a limit is to consider the 
reflectances of the specular surfaces involved in a 
particular pattern. For each specular reflection, 
the reflected radiant energy would be attenuated 
in proportion to the reflectance of the surface. 
The ratio of attenuated radiant energy of the a 
pattern of n reflections to the initial radiant 
energy is : 

where Z,/I, is the ratio of attenuated to un- 
attenuated radiant energy for the a pattern of 
n reflections. As an example of this attenuation, 
if p = 0.8 is the reflectance for all the surfaces 
involved in a pattern of six reflections, then 
ZJZ, = 0.26 ; however, if p = 0.5, then after 
six reflections, ZJJI,, = 0.016. Although this 
criterion neglects the effects of geometry and 
surface arrangement in the enclosure, it is 
possible to obtain a crude estimate of the contri- 
bution to the radiant transfer as the number of 
reflections of the patterns increase. 

The total view factor for the transfer of 
radiative energy between two surfaces of a 
configuration by multiple specular reflection is 
equal to the sum of the view factors to the 
images resulting from all patterns between these 
two surfaces. Therefore, the general expression 
for the view function to any secondary image 
formed by a particular pattern of reflections 
must be determined. 

When the above notation is used, the general 
mathematical expressions necessary to evaluate 
the view function to any secondary image take a 
form similar to that obtained in the primary 
image development as explained in the preceding 
section. Rather than performing a rigorous 
development for the general expression of the 
view function to secondary images, theexpression 
already developed for the primary image view 
factor (equation 3) will be used. In this expression, 
it will be recalled, the two cosine terms in the 
numerator represent the angles at which a ray 
leaves a source surface and arrives at the receiver 
surface. It then follows that these two cosine 
terms maintain the same significance for both 
the single and multiple reflection view functions. 
The term in the denominator of equation (3) 
represents the square of total path distance 
traveled by the ray from the source to the 
receiver surface; likewise, the denominator of 
the multiple reflection view function represents 
the total path length squared. 

Thus, when considering the secondary image 
formed by the ath pattern ofn reflections, the view 
functions to this image on surface number S, 
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Pattern 

number 
Surface sequence Vector sequence 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

Vl. 1 
I.S.,, 

vzs 1 
Z,S”,, 

V3’1 
1.1 

V4’ I 
1.2 

v;- ; 

V6’ 1 
2.2 

v:. ; 

~8.1 
I,1 

V9,l 
1.2 

Vpj’ 

Vi’j’ 

Vi2i1 

Vi3i1 

Vi*j’ 

Vi5i’ 

Vi6i ‘ 

Vi’;’ 

Vi*i’ 

Vigil 

Vf”i ’ 

V:‘j’ 

Vi2i ’ 

Viai1 

Vf4j1 

V:‘i ’ 

Vz6j1 

Vi’j’ 

V:*j’ 

V:‘j’ 

Vipj’ 

v3.2 
l,S.+! 

v4.2 
2..S.+j 

V?&+, 

~6.2 
Z,S.+r 

V7.2 
1. 1 

vt:: 

Y?: 

Vi”j2 
v11.2 

2.1 

Vi2i2 

Vi’j2 
v14,2 

2,l 

V’S, 2 
1,l 

Vi6j2 
V’7.2 

2.1 

V:8i2 
v19.2 

1.1 

Vf”j2 
V2’,2 

291 
v22,2 

1, 1 

V:“j’ 

Vz4j2 

Vf5j2 

Vi6i2 
v27,l 

2.1 

V;8j2 

V:9j2 

V3,‘j2 

VT. 3 
l.S.+, 

v9.3 
*.s.+, 

v9. 3 
2.S.+1 

V’O. 3 
2,s.+t 

VlL3 
l,S.+, 

Vl2.3 
l.S,+1 

v13.3 
z,s.+, 

v14.3 
l,S,+, 

V:‘i3 V’5.4 
1,s. II 

Vi6i3 VW4 
1.S.+r 

v17.3 
1,l 

v17,4 
1-S. t, 

vl8,3 
1.2 

~18.4 
2.s. +I 

Vi9i3 v19.4 
l,S.*t 

Vs”j3 VZO. 4 
2.S.+, 

Vf’j3 v21.4 
Z,S.*, 

Vf’j’ v22,4 
2,S.+1 

Vi3i3 v23.4 
l.S.*, 

v24.3 
2.1 

v24.4 
l.S,+, 

Vi5j3 v25.4 
Z,S,+* 

~26.3 
1.1 

~26.4 
I..%+, 

Vf7j3 ~27.4 
Z,S.+r 

V$*j’ ~2834 
2,s.+, 

Vs9i3 v29.4 
l.S,+, 

Vzpj3 v30.4 
2,S.+t 

as viewed from surface number S,+ 1 are : and 

dA S,+tdFSR+,,S0 cos ego = (N$‘) * (Y&i,) . 
lNZ”/ - IV&I’ cos ea,, cos Ps 

W2 ,,+ I dA,, +, dA,,, 
cOses,+, = 

(W:+:‘) * (Vi:,'n'+,) 

( W:+:+: 1 1 ( Win’, , I ’ 

where (10) 
and where (So, S1, S2, . . ., S,, 1) is the sequence of 

II+1 
D” = &I IK:c,siI, 

surface identification numbers associated with 
the ath pattern. As in the case of the view function 



612 J. A. PLAMONDON and T. E. HORTON 

to the primary image, the view factor to a 
secondary image is obtained by integrating 
equation (10) over the appropriate limits. The 
limits of integration as well as the relationships 
between the variables appearing in the integrand 
are obtained by solving a system of equations 
similar to equations (6) and (7). This system of 
equations for the multiple reflection case speci- 
fies the conditions under which the “law of 
reflection” is satisfied at each reflection point. 
and yields the relationships between the source 
point, reflection points, and final incidence 
point for the secondary image patterns. For the 
ath pattern which involves n reflections at points 
(P;;‘, P;;‘, P$ . ., Pgr) on the sequence of 
surfaces (S,, Sz, S3, ., S, . . ., S,), where the 
S,‘s are chosen from the set of surface identifi- 
cation numbers, the coordinates of the reflection 
points are related to the source point P$,” on 
surface S,,* and the final incidence point Pi;“+: ’ 
on surface S,+ 1, by the system of (3n + 2) 
simultaneous equations of the form : 

=f~i_,.si.s,+,(P”,li;‘, P:ii, p”,$‘) = 0, (11) 

f~i_,,s,.s,+,(P”s~~~‘, P”,:‘, Pgy) = 0, (12) 

fg,(P”,;‘) = 0, 

for i = 1,2,3,. . ., n, 

as well as 

(13) 

(14) 

and 

G”, * Ef+: ‘1 = 0. (15) 

The functionsf,Fi for i = 1, 2, 3, . . ., n are the 
equations of the specular surfaces involved in 
the pattern. Thef& andfc”+, are the equations 
of the source and the receiver surfaces, respec- 
tively. Each of the functions fF{ _ 1, s,, s, + 1, which 
result for the expansion of the dot product 

vector equations, in the general case relate the 
nine coordinates of three successive reflection 
points so as to insure that the angles of incidence 
and reflection are equal at each reflection point. 
Likewise, the functionsfgi _ ,,si, si + ,, which result 
from the expansion of the triple-product vector 
equations, insure the coplanarity of the incident 
ray, the reflected ray and the normal to the sur- 
face at the reflection point. 

The 3n + 2 equations in general will contain 
three (n + 2) coordinates of the pattern under 
investigation. Thus, if four coordinates of the 
pattern are specified, the above system of 
equations will yield a solution, provided the 
pattern is physically capable of satisfying the 
constraints imposed by these coordinates. 
Usually, two of the specified coordinates would 
be related to the source point of the pattern 
and the other two would be related to either the 
receiver point of the pattern or the first reflection 
point of the pattern. 

Careful examination of the multiple reflection 
formulation in terms of equations (11) and (12) 
reveals that the number of functional forms of 
fD and f c required to represent reflections that 
make up all possible patterns is related only to 
the number of surfaces in a configuration. This 
maximum number of functional forms of fD 
andfC required to describe all possible patterns 
involving at least one specular reflection for a 
configuration of pD diffuse and pS specular 
surfaces is (pS + pD)‘. Due to the reciprocity 
theorem [8] as well as the physical impossibility 
of some reflections, there will be considerably 
fewer functional forms in most applications. 
For example, the functional forms for a (1, 2, 3 1 
reflection and a (3, 2, 1) reflection are identical ; 
also, when considering reciprocity. the number 
of functional forms is reduced to : 

PDiP.9 

(Ps) ( plxl ) p 

3. EXAMPLES 

A. Example l-view factor to a primary image 
The following example demonstrates the use 
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of the equations derived for a single or primary 
image. For this purpose, consider a segment of a 
circumferentially finned cylinder with the non- 
planar circular wall reflecting radiation specu- 
larly, as shown in Fig. 3. For this case, the view 
factor to the image of the right fin in the cylinder’s 
wall, as seen from the left fin, is desired. 

Because of axial symmetry, an elemental 
radial strip (b - a) da, at any angle a1 on the 
left tin views exactly the same geometrical 
image of the right fin ; thus, dAI can be fixed to 
lie along the p-axis at a1 = 0. A point defining 
the location of dA 1 is : 

P, = o,p,o, (164 

where p is, in cylindrical coordinates, the radial 
distance from the axis. With P, fixed along the 
p-axis at a1 = 0, the points P2 and P, become: 

P, = q sin a2, q cos aZ, L, (16b) 

P, = asinw, acoso,z, (16~) 

where q and a2 are the radial and azimuthal 
coordinates of the right fin, and z and w are 
the axial and azimuthal coordinates of the 
reflection point on the wall of the cylinder. 
Using these points, the vectors V,, and V,, 
become : 

V,, = P, -P, = i(-asino) 

+ j(-acoso + p) + k(-z), (174 

V,, = P2 - P, = i(-qsinaz + asino), 

+ j(qcosa, + acosm) + k(-L + z), (17b) 

with their absolute magnitudes given by : 

IV,,\ = /[a’ + p2 - 2apcoso + z2]+I, (184 

IV,, I = I [a” + q2 - 2aq cos(a, - 0) 

+ (L - z)2]+1. (18b) 

The equations for the planes containing the 
surfaces of the tin are given by H,(<,, rz, &) = 
z1 = 0 and H,(<,, t2, t3) = L - z2 = 0; thus, 
the normal vectors N, and N, are : 

N, = +k and N, = -k. (19) 

with their absolute magnitudes being: 

INIl= and IN,l=l. (20) 

The equation for the surface of the cylinder at any 
location z, is H,(<,, t2, t3) = g: + ts - a2 = 0 
where <I = a sin w and t2 = a cos o; thus the 
normal vector at the point of reflection is: 

N, = i2a sin o + j2a cos o, (21) 

and its absolute magnitude is : 

INIl = 2a. (22) 

For this particular example, the limits of 
integration are terminated over the azimuthal 
angle a2, when (V,,). (NJ = 0 and 

FIG. 3. Cylindrically finned cylinder. 
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(V,,) * (NJ = 0; thus the limits over u2 are : 

+ cos-‘a . (23) 
4 

If both fins are of equal outer radius; then the 
limits of integration over p and q are from a to b. 
The limit of integration over ai is simply from 
0 to 2R. 

Nondimensionalize the equations by letting 
p = [a, q = vu, z = Bb, b = Ma, and L = Na. 
Now substituting equations (17-23) into equa- 
tions (3), (6), and (7) and integrating equation (3) 
over CQ yields the following set of equations for 
the view factor to the image : 

F,_, = %J 
a(M2 - 1) 

x ,!I ,I, 

+cos-‘(l/~)+cos-‘(l/~) 

--cos- l(l,J-EOI- 1(1/C) Biq(N - b) 

x [l + (2 - 21coso + /I*]-+ 

x [l +‘I*-2~cos(a,-o)+(N-/I)*]-+ 

x {[1 + <* - 21 cos 0 + /?‘]f 

+ [l + q2 - 2~ cos(a, - 0) (24a) 

+ (N - p)“]+} - * du, dy d[ 

p = [N sin w/[[ sin o + q sin@* - o)] (24b) 

q cos(a, - co) - 1 

[l + t1* - 2~ ~0432 - u) + (N - P)*l”~,,) 
1 - c” cos w 

= [l + i* - 2; cos w + /I’]+. 

These equations were programmed for and 
solved numerically on an IBM 7094 computer. 
Simultaneous solutions were first obtained for 
equations (24b) and (24~) for the coordinates 
of the reflection point on the cylinder wall for 
systematic values of the coordinates of the 
source point P2 and the receiver point Pi. 
With the reflection point tabulated against a 
pair of source and receiver point coordinates, 
numerical solutions were then obtained for 
equation (24a). The results of these calculations 
are plotted in Fig. 4. 

B. Example 2-view factor for secondary images 
To briefly illustrate the technique for formu- 

lating the system of equations which describe 
the patterns for a multiple reflection conligura- 
tion, consider an infinite channel consisting of 
a concave specular surface, a convex specular 
surface, and two parallel diffuse surfaces, as 
shown in Fig. 5. Only the patterns which lie in 
the plane of the cross section and originate at a 
point y, on surface 0 and are received at point 
y3 on surface 3 are considered. 

Because the patterns of this example are now 
confined to a plane, the f”‘s may be ignored. 
The vectors required to describe the patterns for 
this configuration are 

al V d,* = E,[@ - l] + EY[(X2 I)* + y8 O - 1-j 

V “d.‘l = &J-X$, l - l] + &J(X; I)* + y”do - l] 

V a, i 
*,3 = E,[Xal’l - l] + EJ(X”1. I)* + ya”] 

V (1, i 
1,3 = 

E,[- 1 _ x~i- 1] + QY; i _ (x,,i-l)*] 

V ar, i 2, r = &,[Xal’ i - x”i i- ‘1 + Ey[(XT y 

-(x”i’-I)* + l] 

V OT, i 1, * = &,[A$ i - L@ i- ‘1 + &J-(J$ I)* 

_ (xti- r)* _ 11 

V 01, i 
2, 2 = &,[XL;. i - x; i-- ‘1 + &J(X? i)* 

_ (x2 i- I)*] 

N? i = s,[2xo;’ i] + s,[ - l] 

N”i’= E,[-~x%~] + cg[+l] 

where E, and E, are unit vectors. 
By the relationship given above, themaximum 

number of f” forms required to describe all 
patterns is 20. However, pattern (0, 1, 3) and 
patterns which result in direct reflections back 
to the diffuse surface such as (0, 1, 0), (0, 2, 0), 
(3, 1, 3). and (3, 2, 3) have been disregarded. 
In addition, the patterns which require a ray 
to pass between two points on surface 1, such 
as (0, 1, l), (1, 1, 1). (1, 1, 3), and (1, 1, 2), are 
physically impossible. Thus, only eleven func- 
tional forms are required. 

Substitution of these vectors for those of 
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I 2 3 4 5 6 7 6 9 IO II I2 13 14 15 

FIG. 4. View factor to the image of a cylindrical tin. 

SURFACE NO. I 

/ I 
f;,(~,,Y,)=Y,-(~,)2=0 

SURFACE NO. 3 SURFACE NO. 0 

osy~5l;x~=I 

I 
SURFACE NO. 2 

f&p Y2)=Y2+I-(x2)2=o 

FIG. 5. Convex-concave channel. 

equation (11) and expansion yields the functional relationships required to describe all multiple 
reflection patterns considered. These are : 

3’ 7’ 
a+ /~~~i;‘~~,~:, =f~l,~(~~~-~,~~~,~~*-‘)=f~,~,~(~,b,c) 

u2 - 2ab + b2 - 1 2bc - b2 - c2 + 1 
= 

[(b - a)’ + (b2 - u2 + l)“]+ + [(c - b)2 + (c2 - b2 - l)‘]* (’ 
+ 4b2)-+, 
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. . &I w.i.va.i+l 

1:;; ;+,‘;I + jlyii\ /<,,t;lj =f?.2.1 (x~‘i-l~xiri’~xO;“+‘) =.f4:2.1 

2ab - b2 - a2 - 1 b2 - 2bc + c2 + 1 
[(b - a)2 + (b2 - a2 _ l)“]+ + [(c _ b)2 + (c2 _ b2 +m (I + 4b2)-f’ 

, . . I 

Fi,li yta:iJ + GIi; ;i,gl 1 =f~.2,2(~~~-~,~~~,xO;.~+~)=f~,~,~(a,b,c) 

2ab - b2 - a2 - 1 b2 - 2bc -t c2 = 
[(b - a)2 +-@ - a2 - 1)2]” + [cc _ b)z + ($ _ b2)2]+ (1 + 4b2)-‘, 

Na, i . v0L.i . . . 

/N;i/ I;.,;/ + ,zli\ :.::I =f~.2.2(~ai~-‘,x~‘,~2a~“) =.ff,z,z(a, 6, C) 

2ab - a’ - b2 
= 

[(b _ 42 + (b2 _ a2)2]+ + [(c _ b)z + (c2 _ (I + 4b2)-” 

,$,*;i;, + ,;;;,*;f;, =f~.2,2cV~“.x”z”~x~‘2) =f:,2.2(u.b,~) 

2b-b2-a-l b2 - 2bc + c2 

[(b - 1)2 + (b2 - a - l)‘]f + [(c _ b)z + (c2 _ b2)2]+ (l + 4b2)-t* 

N”ii.VT,‘; ,‘. $71 

/N?ii Iv::/ + /:#ii ~~,~~~~ =f~.2.3(~al’~-‘,~ai~~~aj~“)=S~.2,3(’,b,c) 

2ab - b2 - a2 - 1 b2+2b+c+1 = 
[(b - a)2 + (b2 - a2 - l)“]* + nl + b)2 + (c _ b2 + 1,213 (l + 4b2)-+t, 

N"ii.V";';+' 

/zi;‘z,?2/ +JN$~/ /vZy~i =f~.2.3(XO;i-1.X~i,Y~i’1) =ff.~~,~(a*b,C) 

2ab - a2 - b2 b2+2b+c+1 = 
[(b - CZ)~ - (b2 - c.z~)~]+ + [(1 + b)2 + (c - b2 + (’ + 4b2)-f’ 

b2 - 2ab + a2 - 1 b2 + 2b + c 
[(b - a)2 + (b2 - u2 + I)“]+ + [(l + b)2 + (c - b2)2]+ (’ + 4b2)-t’ 

Note that by reciprocity : 

f~,2,2(~~i-l,xaii,X~i+l) =-f::2.1(xaz,i-l,x~i.x~i+l). 
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FIG. 6. Relationship between coordinates of source, reflec- 
tion, and receiver points for patterns No. 1 through No. 4. 
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The system of simultaneous equations to be 
solved for the first few patterns is : 

pattern No. 1 (0, 2, 3) 

fo.2.3 (Y$"? x:+ y:. 7 = 0, 

pattern No. 2 (0, 1, 2, 3) 

fo, 1.2 (& O, x:. i. x:. ? = 0, 

pattern No. 3 (0,2, 1, 3) 

fo. 2, 1 bt O, x:j l, x:- 7 = 0, 

f2,1,3 (4", XT."> y?") = 0, 

pattern No. 4 (0, 2, 2, 3) 

fo, 2.2 (YG.“, x1. i> x;, 2, = 0, 

f2.2.3 Ml, x:,", y$") = 0, 

pattern No. 5 (0, 1, 2, 2, 3) 

f 0.1.2 Yo ( 5*o, x:3 l_ x:*2) = 0, 

f 1.2.2 (xi- I, x:.', x2.3) = 0, 

f 2.2, 3(x;*", x;,". y:.") = 0, 

pattern No. 6 (0, 2, 2, 2, 3) 

f 0,2.2 Yo ( 6-o, xg* I, xy, = 0, 

f 2,2.2 (xf- l, xf,", XZ'3) = 0, 

f2.2.3 cxqq2, x$", &") = 0, 

pattern No. 7 (0, 2, 2, 1, 3) 

fo.2.2 (J$", x:, I, xi,") = 0, 

f 2.2.1 (xi.,, xi,", xY.3) = 0, 

f2.1, 3 (x:.2, xi,", y:.") = 0, 

pattern No. 8 (0, 2. 1, 2, 3) 

fo.2.1 (yg-". xy. x?,') = 0, 

f*, 1.2 (x;.,. x?,", xi-', = 0, 

f 1.2.3 (XY,,, xi,", y$") = 0, 

pattern No. 9 (0, 1, 2, 1, 3) 

f 0.1.2 Yo ( 9.0, XT.', x;-') = 0, 

fi.2.1 M1, x;.'. x7.") = 0, 

.I;, 1. 3(x9.2, XT.", y;,") = 0. 

The relationship between the coordinates of 
the first four patterns is shown graphically in 
Fig. 6. It is interesting to note that pattern No. 4 
gives rise to three secondary images. 

4. CONCLUSION 

Although the above approach allows a 
straightforward formulation of the system of 
equations describing the multiple reflection 
patterns associated with a configuration con- 
taining curved specular surfaces with a minimum 
of geometrical analyses and the computation 
procedure is reduced to a familiar form, the 
solution of the system of equations and the 
computation of the view function and view 
factor remain a formidable task. However, the 
storage capacity and speed of computation of 
the modern electronic digital computer and the 
techniques of numerical analysis are equal to the 
challenge. These, then, would indicate the feasi- 
bility of a view factor program for generalized 
curved specular surface configuration. 
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,ResmsCOn presente des expressions mathematiques get&ales pour (1) le facteur de formecorrespondant 
settlement a I’image primaire dune surface vue par une autre surface dans un reflecteur sp&mlaire non- 
plan, et (2) le. facteur de forme pour I’image secondaire dans une situation d’images multiples faisant 
intervenir des rtflecteurs spCcu!aires non-plans. La notation vectorielle est employ&e pour presenter les 
formules get&ales qui sont independantes dun systtme specifique de coordonnls. Les expressions 
resultantes sont simples dans leur concept et sont identifiables avec I’expression connue communement 
pour le facteur de forme entre des surfaces diffuses. Les formules etendent I’application de la “mtthode 
des images” a des enceintes contenant des surfaces sptculaires de forme arbitraire. On donne deux 

exemples qui illustrent I’emploi des expressions generales. 

Zusammenfassung-Allgemeine mathematiche Ausdriicke werden angegeben fiir (I) den Anordnungs- 
faktor nur fiir die Primiarabbilduna einer Oberflache gesehen von einer zweiten ObertXche aus in einem 
nichtebenen spiegelnden Reflekto; und (2) den Anordnungsfaktor fiir die sekundlre Abbildung im 
vielfach abbildenden Fall bei nichtebenen spiegelnden Reflektoren. Die Vektorbezeichnung wird ver- 
wendet, urn die allgemeinen Formulierungen wiederzugeben, die unabhangig von einem spezifischen 
Koordinatensystem sind. Die resultierenden Ausdriicke sind begrifhich einfach und sind vergleichbar mit 
den allgemein bekannten Ausdriicken fti den Anordnungsfaktor zwischen diffus strahlenden Obetichen. 
Die Formulierungen erweitern die Anwendung der “Abbildungsmethode” auf Verhlltnisse mit spiegelnden 
Oberfhachen mit beliebiger Topographie. Zwei Beispiele sind angegeben, urn die Anwendung der allgem- 

einen Ausdriicke zu erllutern. 

AHHOTibqHJI-npHBe#?HH o6mne r+rareMaTri~ecrure nbtpamearin, no-nepsnx, nn~ yrno~oro 

KO3#IiqI%eHTa TOllbKO ASIX IIepBMsHOI'O w3o6pamema OAHOti IlOBepXHOCTK C TOYKII 3peHUK 

ApyrottnOBepXHOcTIl BHeIIJlOCKOM 3epKanbHOM oTpaniaTene,a BO-BT~~~IX, yrnonoro Koal#l$H- 

IJHeHTa B CJIyqae MHOFKeCTBeHHbIX K306pameHui4 B HelIJlOCKOM 3epKaJlbHOM OTpamaTeJle. 

OG~rre~0pMy~~p0~~~~~a~Tc~~~eKTop~~o~BbIpameK~a~ne3aBIicrtT0~cacTe*~Koop~~KaT. 

HOJIyqeHHbIe Bbtpa?KeHIUi OqeHb IlpOCTblKMOryT6blTbJ~erK0 CBeAeHbIKH3BeCTHbIM BbIpaWe- 

HIlRM AJIHyI'JIOBOrO KO3#@4I(lieHTa MeHcAypaCCeHBaIO~LiMPi IIOBepXHOCTHMH. 3TII +OpMyJIK- 

pOBHH II03BOJIRH)T IIpHMeHllTb MeTOA *#306p3PKeHHh J&JIH 060JIOqeK OTpa?KalOIQIJX IIOBepX- 

HOCTet~pOH3llOJIbHO~TOIIO~pa~HM.~,?RHJIJItOCTpa~IIM 06mnx. BhlpameH&ii IlpPBOJRTCR ABa 

npa3repa. 


