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Abstract—General mathematical expressions are presented for (1) the view factor to only the primary
image of one surface as seen by another surface in a nonplanar specular reflector, and (2) the view factor
to secondary images in a multiple imaging situation involving nonplanar specular reflectors. Vector notation
is used to present the general formulations that are independent of a specific coordinate system. The
resulting expressions are conceptually simple and are identifiable with the commonly known expression
for the view factor between diffuse surfaces. The formulations extend the application of the “‘method of
images” to enclosures containing specular surfaces of arbitrary topography. Two examples are given which

illustrate the use of the general expressions.

NOMENCLATURE }

length of raypath between source and
receiver;

incremental area on source or receiver
surfaces;

view factor between two incremental
areas;

triple product vector equations;

dot product vector equations;
function defining surfaces of enclosure
(Part B);

function defining surface of source,
reflector, or receiver (Part A);

radiant flux;

total number of patterns;

maximum size of n;

vector denoting surface normal;
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1 Applies only to Parts A and B of Section 2. Nomen-
clature in examples (Section 3) is self-explanatory.

n, total number of reflections in a pattern ;

P, surface points defining the vectors V;

P, number of reflectors in enclosure;

V, vector representing length and direc-
tion of a ray;

0, angle between ray and source or re-
ceiver normals;

P, reflectance;

o, incident or reflection angle on reflec-
tors.

Subscripts, Part A

1, receiver surface;

2, source surface;

2, image of source;

‘, angle of incidence ¢, ;

r, reflector;

n, angle of reflection ¢,.

Subscripts, Part B

Sa

reflector identification;;

S,+1, receiver identification;

So,

source identification.

Superscripts, Part B

L,
@,
665

identification of reflection in pattern;
pattern identification.
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1. INTRODUCTION

THE DETERMINATION of view functions, and con-
sequently, view factors, is essential in the calcula-
tion of radiant heat transfer between surfaces.
In simple calculations, a numerical value repre-
senting that portion of the radiant energy
leaving one surface and incident upon another
is called the view factor (or the angle factor or
configuration factor). For complex calculations
where local radiant heat-transfer variations are
taken into account, a function representing that
portion of radiant flux leaving one elemental
area and incident upon another is called a view
function. The view factor results from the
integration of a view function over the areas of
the surfaces involved.

Because the mathematical formulations for
real surface radiant heat exchange are complex
and the subsequent solutions are difficult, a
number of simplifying idealizations are generally
necessary. These idealizations are related to the
nature of the interaction of thermal radiation
with a surface and usually pertain to (1) the
spatial distributions of reflected and emitted
radiation in the half-space above a surface, and
(2) the dependence of surface properties on
wavelength. In radiative analysis two alternative
idealizations prevail regarding the spatial distri-
butions of emitted and reflected radiation: a
surface is idealized as either diffuse (Lambertian)
or specular (mirror-like). With the diffuse ideali-
zation, the spatial distributions of both emitted
and reflected radiation are Lambertian. For the
specular case, emitted radiation is also Lam-
bertian in distribution; however, the spatial
distribution of reflected radiation obeys the
“law of reflection” for optically smooth surfaces.

Until recently, analyses have been based
almost exclusively upon the diffuse idealization,
due to the fact that no conceptually simple
analytical technique had been formulated for
applying the specular idealization. In spacecraft
technology where radiant heat transfer plays a
dominant role, it has now been recognized that
radiant heat transfer between surfaces of a
specular character is perhaps the more common
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situation, and a number of papers dealing with
the specular idealization have appeared in the
literature [ 1-6]. These papers describe analytical
techniques for handling the more computation-
ally difficult specular idealization, as well as
comparative data demonstrating that important
differences can occur when computations are
based on one or the other of the two idealiza-
tions. Papers published to date deal only with
planar and axially symmetrical enclosures in-
volving just the internal surfaces of cylinders
and cones.

Among the analytical techniques for handling
the specularly idealized situation is the “method
of images” [1, 2]. The imaging technique
considers the radiation reflected from a specular
surface as having originated from the image of
the source of that radiation, with the imaged
surface appearing as a diffuse source of radi-
ation. Thus, calculations used for the radiant
heat-transfer within an enclosure containing
specular reflectors are similar to those applied
to entirely diffuse enclosures. Therefore the
contribution of specularly reflected radiation to
the radiant heat transfer can be accounted for
by determining the view factors to the images
formed in the specular reflectors of the enclosure.
Since the images are treated as diffuse sources of
radiation, the usual expression for the view
factor applies, but the expression must be
multiplied by the reflectance of the reflector to
account for attenuation in intensity resulting
from absorptance by the reflector. The resulting
general expression for the view factor to an
image in a specular reflector is (Fig. 1):

cos 8, cos 8,
nD?_,

where dF, _,. is the incremental view factor from
dA, to the image of dA4,; dA4 is an incremental
area on surface 1; d4 is an incremental area on
the image of surface 2 (the prime denotes image)
corresponding to a homologous incremental
area dA4, on surface 2; D,.., is the distance
between dA, and dA4); 6, is the angle formed by
the normal at d4, and the vector from dA4, to

dAl dFl"Z’ = pr dAt dA! . (1)
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dAj; 0, is the angle formed by the normal at
dA4’, and the vector from d4), to d4,; and p, is
the reflectance of the reflector.

When the specular reflector is a planar surface,
the application of equation (1) is straightforward,
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F1G. 1. An arbitrary arrangement of three surfaces, one of
which is a specular reflector.

since the location, size, and shape of the image
can readily be obtained. However, when the
specular reflector is nonplanar, these parameters
are more difficult to determine. The use of
simple geometric optics in the non-planar case
would require ray-tracing to locate and to
thoroughly describe an image. Since this ap-
proach would be exceedingly difficult and time-
consuming, it is the purpose of this paper to
present a general analytical technique for
determining the view factor to an image in a
nonplanar specular reflector.

The derivation of general expressions is
presented in two parts: (1) the formulation for
the view factor to only the primary image of one
surface as seen by another in a specular reflector ;
and (2), the formulation for the view factor to
any secondary image that could be formed by
multiple reflection. In addition, a sample prob-
lem involving only a single reflection, and thus
only a primary image, is presented, and numeri-
cal results are given. Finally, a specific problem
involving multiple reflection is included to
illustrate the application of the general expres-
sions to secondary images.
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2. DERIVATION OF GENERAL EXPRESSIONS

As was pointed out by Lin and Sparrow [7],
an essential step in the analytical formulation of
expressions for the view factor to an image in a
nonplanar reflector is the determination of the
relationships between the points of origin,
reflection, and final incidence of a ray leaving a
source surface, being specularly reflected, and
finally arriving at a receiver surface. To achieve
this, a vector representation of a typical reflection
pattern within an enclosure is used here. The
use of vector analysis allows the laws of reflection
for specular surfaces to be represented in a
general form independent of the coordinate
system of the enclosure, thus leading to a con-
ceptually simple general formulation.

A. View factor to the primary image

The simplest case involving the reflection of
radiation from a nonplanar specular surface is
that for which only a single reflection is con-
sidered ; thus, only the view factor to the primary
image is sought. For such a situation, consider
an arbitrary arrangement of three surfaces, one
of which is a specular reflector, as shown in Fig. 1.

In Fig. 1, a ray emitted from dA, at point P,,
striking the reflector at point P,, and incident
upon dA4, at point P,, will, as seen from P,,
appear to have originated at a point P, at a
distance |V5,| in back of the reflector. Point P!,
is the image of point P,. Therefore, if one
considers an elemental area dA45, located at P,
whose normal is ), relative to V5,, then the
view function from dA, to dA4) is given by
equation (1). If d 4}, is the image of dA4,, then as
dA, — 0, the principles of geometric optics for
planar surfaces apply to these incremental areas,
so that:

cos 8, = cos 8,
|V12r| = |v2r|9 (2)
dA, = dA,.

Thus, the view function to the primary image of
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A, becomes

cos 0 cos 0,
| Voa| + [Va|

where D, _,. in equation (1) has been replaced
by the sum of |V,,| and |V,,|. The cosine terms
appearing in equation (3) can be obtained from
the following vector dot products:

_(=V.)-(Ny

dAl dFl-Z' = P, )2 dAl dAz, (3)

cosf; = V.. TN and o
cos 0 _ (VZr) : (NZ)
2V, ING]

Furthermore, if surfaces 1 and 2 are defined by
the equations H, (£, &;, &5) = 0and H, (£, &,,
&3) = 0, respectively, then:

N, = Grad H, = VH,,
N, = Grad H, = VH,,
= )
INy| = |VH,],
IN,| = |VH,|.

Since the vectors V,, and V,; are defined by
the reflection point P,, the evaluation of the
view function to the image of d4, requires a
knowledge of the relationship between the co-
ordinates of P, and the points P, and P,. One
constraint on the coordinates of P, is that P,
must be on the surface of the reflector which is
defined by the equation H, (&4, &5, &) = 0. The
remaining constraints are obtained from the
“law of reflection” [8] which requires that:

and

1. the incident angle ¢, must equal the reflec-
tion angle ¢, ; or cos ¢, = cos ¢,, so

(V2) (N)
Varl IN,]

(V1) (N,)
Vol N

=0; (6)

2. the incident ray, reflected ray, and normal
at P, must be coplanar, so that

Nr * (V2r X Vrl) = 0. (7)

Note that equation (3) can be rewritten in the
vector form using appropriate substitutions of
equations (4) and (5).
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The view factor to the image of surface 2 as
seen from surface 1 is obtained by integrating
equation (3) over the appropriate limits. The
limits of integration over surfaces 1 and 2 are
conditional. Two general conditions, or their
combination, that might occur are:

1. The image of surface 2 is not completely
contained, as viewed from surface 1, within
the boundaries of the reflector; in this case,
the integration is bounded by the physical
boundaries of the reflector, and thus the
integration is over that portion of A, that
Acan see as imaged.

2. The image of surface 2 as seen from surface
1 is completely contained within the bound-
aries of the reflector; in this case, the
integration is over the entire areas of
surfaces 1 and 2.

B. View factor to secondary images

The development thus far is useful only in
determining the view factor to primary images,
i.e. images that result from a single specular
reflection between the receiver and the source.
However, for an enclosure having one or more
specular surfaces of such geometry or so ar-
ranged that many specular reflections are pos-
sible in the transmission of radiant energy from
the source to the receiver, a means for determin-
ing view functions, and thus view factors, to
secondary images is required.

The principal difficulty in developing a general
procedure to determine view functions to
secondary images is that of accounting—both
systematically and mathematically—for all inter-
reflections and resulting images. If the develop-
ment is limited to enclosures containing a finite
number of specular surfaces p, each of which is
defined by a continuous function, then each
specular surface can be uniquely identified by a
number from the set 1, 2, 3, .. ., p. A particular
ordering of numbers from the set 1,2, 3, .., p,
designating the sequential ordering of reflec-
tions among the specular surfaces in the trans-
mission of radiation from the source to the
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receiver would result in one or more particular
images of the source. This sequential ordering
of numbers from the set 1,23, . ., p will be
referred to as a pattern. For example, the
following sequential ordering of numbers 1,8, 6, 3
would define a pattern of specular reflections, in
chronological order, from the source to specular
surfaces 1, 8, 6, and 3 and then to the receiver.
Since the sequential ordering of reflections from
the finite set 1, 2, 3,. ., p can involve repetitious
use of any or all numbers from the set, the
number of reflections can be infinite; thus, the
possible number of patterns can be infinite.
Since the number of possible patterns is large, a
number from another set of numbers 1,2, ..., «©
will in turn be used for the identification of a
particular pattern;i.e. a number from the second
set will denote a particular sequential ordering of
numbers from the set 1,2, 3, .. ., p.

The symbol a will be used as a general desig-
nation of the identification number for a pattern ;
i.e. o is a general designation of a number in the
set1,2,..., co. In a particular pattern, the number
of reflections between the source and the receiver
will be denoted by n wheren = 1,2, ..., 0. Any
particular reflection will be denoted by i where
i=12 ... n Associated with the ith reflection
is a specular surface identification number from
the set 1, 2, 3, .. ., p. This surface identification
number will be symbolically represented by S,.

Using the latter symbols, any ray reflected
between two specular surfaces and the co-
ordinates of any reflection point in a pattern can
be accounted for by the use of a double subscript
and superscript notation. Thus the vector

%’ s, Tepresents a ray in the ath pattern
occurring at the ith reflection in the chronology
of the pattern. The origin of the vector occurs
on the specular reflector identified by S;_; and
its terminus by S, A similar notation for the
reflection points defining this vector and the
coordinates of the reflection points can be used.
The terminus point of the vector would be P"S;",
or in terms of generated coordinates, this point
is (&34, %4, £%4) while the origin of the vector

18 S.-‘i_ll or (é?,’g—.—ln g.’is_i—ll’ ég:fifJ- The

2u
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symbols S, and S, , , will denote the source and
receiver surfaces, respectively.

In general, for a pair of source and receiver
surfaces, the maximum number M of patterns
for an arbitrary enclosure of p number of
specular surfaces is given by the expression:

m
M=) @ ®
n=1
where m is the maximum number of reflections
which contribute to the radiant heat transfer
between the source surface and the receiver
surface. Note that m is not necessarily the
maximum number of possible reflections but,
rather, an imposed arbitrary limit; also, the
maximum number of patterns given by equation
(8) does not take into account the arrangement or
topography of the specular surfaces in the
enclosure. Thus, for a specific configuration,
certain patterns are likely to be physically
impossible because of surface arrangement or
topography. For example, if a specular surface
is planar or convex, those patterns which require
two or more consecutive reflections are physic-
ally impossible.

To illustrate the application of the notation
introduced thus far, consider an enclosure
containing two specularly reflecting surfaces
limited to a maximum of four reflections for a
pattern. Such an enclosure is illustrated in

REFLECTOR |

14,0
Vo'l A
So. !
\ //\\Q // \
_— N o/’

~

REFLECTOR 2

FIG. 2. Diagram illustrating notation for several patterns
using a two-specular surface configuration.
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Fig. 2, where S, and S, , are arbitrary source
and receiver surfaces, respectively. From equa-
tion (8), the maximum number of patterns M
for m =4 is 30. The number of patterns for
n = 1,2, 3, and 4 reflections is shown in Table 1.
The sum is, of course, 30. This table clearly
shows the correlation between the rapid in-
crease in M with the increase in maximum
reflections m. A tabulation of the pattern
number « against the sequence of the chrono-
logical surfaces in the propagation of the pattern
and the associated sequence of vectors is
shown in Table 2.

Table 1. Number of patterns vs. number of reflections n in
each pattern for two specular surface enclosures

Number of
reflections Number of

in pattern, n patterns
1 2
2 4
3 8
4 16

30=M

The rays shown in Fig. 2 represent the inter-
reflection pattern for patterns 14 and 28 of
Table 2.

In an arbitrary enclosure containing one or
more specular surfaces, the number of possible
patterns can be very large—even infinite. For
such situations, a limit on the number of
reflections, and thus the number of possible
patterns, is necessary for practical reasons.
One means of imposing a limit is to consider the
reflectances of the specular surfaces involved in a
particular pattern. For each specular reflection,
the reflected radiant energy would be attenuated
in proportion to the reflectance of the surface.
The ratio of attenuated radiant energy of the «
pattern of n reflections to the initial radiant
energy is:

1/, = ]="[1 Ps 9
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where 1,/I, is the ratio of attenuated to un-
attenuated radiant energy for the « pattern of
n reflections. As an example of this attenuation,
if p = 08 is the reflectance for all the surfaces
involved in a pattern of six reflections, then
I/, = 0-26; however, if p = 05, then after
six reflections, I/I, = 0-016. Although this
criterion neglects the effects of geometry and
surface arrangement in the enclosure, it is
possible to obtain a crude estimate of the contri-
bution to the radiant transfer as the number of
reflections of the patterns increase.

The total view factor for the transfer of
radiative energy between two surfaces of a
configuration by multiple specular reflection is
equal to the sum of the view factors to the
images resulting from all patterns between these
two surfaces. Therefore, the general expression
for the view function to any secondary image
formed by a particular pattern of reflections
must be determined.

When the above notation is used, the general
mathematical expressions necessary to evaluate
the view function to any secondary image take a
form similar to that obtained in the primary
image development as explained in the preceding
section. Rather than performing a rigorous
development for the general expression of the
view function to secondary images, theexpression
already developed for the primary image view
factor (equation 3) will be used. In this expression,
it will be recalled, the two cosine terms in the
numerator represent the angles at which a ray
leaves a source surface and arrives at the receiver
surface. It then follows that these two cosine
terms maintain the same significance for both
the single and multiple reflection view functions.
The term in the denominator of equation (3)
represents the square of total path distance
traveled by the ray from the source to the
receiver surface; likewise, the denominator of
the multiple reflection view function represents
the total path length squared.

Thus, when considering the secondary image
formed by the ath pattern of n reflections, the view
functions to this image on surface number S,
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Table 2. Sequence of all patterns for a maximum of four reflections from two specular surfaces
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Pattim Surface sequence Vector sequence
numoer
1 S0, 1,8p41 V§$?1 Vi:én“
2 S0,2, 8041 Vgl,oz v%:é,.H
3 S0, 1,1, 8,44 Vso 1 V?Ii V1 Snay
4 Sor 1,2 8041 V§ Vil V35
5 S0,2,1, 8044 Vg‘éoz Vg:} Vf é,.“
6 $02,2, 8,41 - Vgé,oz Vg:i Vg é,,,
7 So 11.1.5,,, V30, vii vii Vit
8 So.1,1,2,5, ., V& vii vii Vid
9 Se1.2,2.8,4, 3 vl v$3 V33,
10 8002,2,2, 8,44 Vios \%% Vi%? Vi%d.
11 $0,2,2,1, 8,44 Vioid vils! vili? Vi,
12 Ser2, 1,1, 8,44 \CRY viit vii? Vi%d.,
13 S 2, 1,2.8, 44 vide Vit vi3,2 viks |
14 Sos 1,2, 1,804 Vio! vist Va4’ Vi,
15 Se LLLLS,y  VEY vid? Vi’ vid? Vike.,
16 S0.1,1,2, 1, Sp4y Vgt vis! Vi&? vis? V%,
17 So. L2, LLS,,, Vg ViTy! vili? vili® Vst
18 So, L1, 1L,2, 8,44 Vi vik! vi%? vi%? Vi%i.,
19 S22 L1, 1, S,4, Vi3 A% vid? vi%? Vi%e.,
20 S0 1,1.2,2,8,44 V§2, ? i V%,Oiz v3%® v%?fs;‘. '
21 50 1,2,1,2,8,4y VD Vit vili? vily? Viki,
22 S0, 2, 1,1,2, 8,4, viZy vii! vii? viy? Viki.,
23 S0.2,1,2,1, 8,44 Vi3 vt viy? vi? vk,
24 50 1,2,2,1,8,,; V%P V4t V342 vih? Vit
25 $0:2,1,2,2, 8,41 v v V35,2 V35,3 AL
26 S002,2, 11,8044 Vissd vi&! vis? vis? Vit
27 80,2,2.1,2, 8,44 V27 ? V%:’il V%?lz Vf?f V%?s':u
28 $0,1,2,2,2,5,4, V§§1° vid V332 V3% viki.,
29 50,222, 1,85, VY Vit v vEi® Vi%i.,
30 8002.2,2,2, 8,44 Vs v3%! v3%? v3%? V3%,
as viewed from surface number S, , | are: and
a,0
d4s, . dFs;, . s, cos 05, = %!)—fvsi’%;
z 0% cos 6 o
= [I;Il pS,:| E)E—S(Ll)a)—z~M dAS.. +1 dASo’ cos OS — (Ng;n++; 1) * (Vg:.",;nlu
O INgRAIVEREL,
where (10) and where (S, S4, S5, . . ., S, + 1) is the sequence of
nt+1

Z | sl LSl

surface identification numbers associated with
the ath pattern. As in the case of the view function
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to the primary image, the view factor to a
secondary image is obtained by integrating
equation (10) over the appropriate limits. The
limits of integration as well as the relationships
between the variables appearing in the integrand
are obtained by solving a system of equations
similar to equations (6) and (7). This system of
equations for the multiple reflection case speci-
fies the conditions under which the “law of
reflection” is satisfied at each reflection point.
and yields the relationships between the source
point, reflection points, and final incidence
point for the secondary image patterns. For the
ath pattern which involves n reflections at points
(P§', P32 PER, .. .. PE™ on the sequence of
surfaces (S;. S5 83 . . . Sin . . . §,). where the
S.’s are chosen from the set of surface identifi-
cation numbers, the coordinates of the reﬂection
points are related to the source point P§;°
surface S,. and the final incidence point P“ "“
on surface S,,;. by the system of (3n + 2)
simultaneous equations of the form:

(Vs (NG (N~ (V5L )
lvsx 151’ 'N ] ]Ng:l| ’V‘zsll;lll
—fS| 1.8, Sux(Pg:l—ll' Pa-"' l+l)—‘ s (11)
g;i.( g-31;1-51 X Vfl l+|1+1)=
IS ss (PESLPELVPESD =00 (12)
f5.(PgYy = (13)
fori=1,2,3,....n
as well as
S5(PE) = (14)
and
5., PgTH =0 (15)
The functions f§, for i =1, 2, 3,.. ., n are the

equations of the specular surfaces involved in
the pattern. The f§ and f§ _ | are the equations
of the source and the receiver surfaces, respec-
tively. Each of the functions /g, _ .5, s,,,, Which
result for the expansion of the dot product
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vector equations, in the general case relate the
nine coordinates of three successive reflection
points so as to insure that the angles of incidence
and reflection are equal at each reflection point.
Likewise, the functions f§, | s, s, , - Which result
from the expansion of the triple-product vector
equations, insure the coplanarity of the incident
ray, the reflected ray and the normal to the sur-
face at the reflection point.

The 3n + 2 equations in general will contain
three (n + 2) coordinates of the pattern under
investigation. Thus, if four coordinates of the
pattern are specified, the above system of
equations will yield a solution, provided the
pattern is physically capable of satisfying the
constraints imposed by these coordinates.
Usually, two of the specified coordinates would
be related to the source point of the pattern
and the other two would be related to either the
receiver point of the pattern or the first reflection
point of the pattern.

Careful examination of the multiple reflection
formulation in terms of equations (11) and (12)
reveals that the number of functional forms of
fP and f€ required to represent reflections that
make up all possible patterns is related only to
the number of surfaces in a configuration. This
maximum number of functional forms of f°
and € required to describe all possible patterns
involving at least one specular reflection for a
configuration of p, diffuse and pg specular
surfaces is (ps + pp)®. Due to the reciprocity
theorem [8] as well as the physical impossibility
of some reflections, there will be considerably
fewer functional forms in most applications.
For example, the functional forms for a (1, 2, 3)
reflection and a (3, 2, 1) reflection are identical ;
also, when considering reciprocity. the number
of functional forms is reduced to:

pp t ps

P C 2P .
p=1

3. EXAMPLES

A. Example 1—view factor to a primary image
The following example demonstrates the use
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of the equations derived for a single or primary
image. For this purpose, consider a segment of a
circumferentially finned cylinder with the non-
planar circular wall reflecting radiation specu-
larly, as shown in Fig. 3. For this case, the view
factor to the image of the right fin in the cylinder’s
wall, as seen from the left fin, is desired.

Because of axial symmetry, an elemental
radial strip (b — a)du, at any angle o, on the
left fin views exactly the same geometrical
image of the right fin; thus, d4, can be fixed to
lie along the p-axis at a; = 0. A point defining
the location of dA4, is:

P, =0,p,0, (16a)
where p is, in cylindrical coordinates, the radial

distance from the axis. With P, fixed along the
p-axis at o, = 0, the points P, and P, become:

P, = gsina,, (16b)
(16c)

where ¢ and «, are the radial and azimuthal
coordinates of the right fin, and z and w are
the axial and azimuthal coordinates of the
reflection point on the wall of the cylinder.
Using these points, the vectors V,, and V,,
become:

g cos o, L,

P,=asinw, acosw,z,

V,, =P, — P, =i(—asinw)

+ j(—acosw + p) + k(—2z), (17a)

V,,=P, - P,=i(—gsina, + asin w),

+ jlgcosa, + acosw) + k(—L + z), (17b)
with their absolute magnitudes given by:
|Vy,| =|[a* + p? — 2apcosw + z*]¥|.  (18a)
|V,2] = |[a® + ¢* — 2aq cos(o; — w)
+ (L - 2*}|.  (18b)

The equations for the planes containing the
surfaces of the fin are given by H,(&,.¢,. &) =
z, =0 and H,(&,, &, &) = L — z, = 0; thus,
the normal vectors N, and N, are:

N, = +k and N,= -k (19
with their absolute magnitudes being:
IN;| =1 and IN,| =L (20)

The equation for the surface of the cylinder at any
location z, is Hr(éls 62’ 63) = é% + é% —-a*=0
where ¢, = a sin w and £, = a cos w; thus the
normal vector at the point of reflection is:

N, = i2asin w + j2a cos w, (21)
and its absolute magnitude is:
IN,| = 2a. (22)

For this particular example, the limits of
integration are terminated over the azimuthal
angle «,, when (V. ):(N)=0 and

Y

F1G. 3. Cylindrically finned cylinder.
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(V,,) - (N,) = 0; thus the limits over «, are:
ay = + fcos™ S 4 cos™t2) (23)
p q

If both fins are of equal outer radius, then the
limits of integration over p and q are from a to b.
The limit of integration over a, is simply from
0to 2n.

Nondimensionalize the equations by letting
p=2~_{a q=na z=pb, b=Ma, and L = Na.
Now substituting equations (17-23) into equa-
tions (3), (6), and (7) and integrating equation (3)
over a, yields the following set of equations for
the view factor to the image:

2p
F, , =— "t
72T M2 - 1)
M M +cos~ {1/m)+cos™ H1/) .
x [ ) Bin(N — B)

{=1 n=1 —cos~!(1/m—cos™ (11

x [1+¢*—2cosw + p*]°*
x [1 +n% = 2ncos(a; — w) + (N — B)*] %
x {[1+—2cosw+ B2}
+ [1 + 7% — 25 cos(a, — w)
+ (N — B} " da,y dndl

(24a)

B = {Nsinw/[{sinw + nsin(x, — w)] (24b)

ncosfo, — w) — 1

[1 + n? — 2ncos(x, — ) + (N — B*J*
1 —{cosw

T+ —2cosw + BT

(24c)

These equations were programmed for and
solved numerically on an IBM 7094 computer.
Simultaneous solutions were first obtained for
equations (24b) and (24c) for the coordinates
of the reflection point on the cylinder wall for
systematic values of the coordinates of the
source point P, and the receiver point P;.
With the reflection point tabulated against a
pair of source and receiver point coordinates,
numerical solutions were then obtained for
equation (24a). The results of these calculations
are plotted in Fig. 4.

J. A. PLAMONDON and T. E. HORTON

B. Example 2—uview factor for secondary images

To briefly illustrate the technique for formu-
lating the system of equations which describe
the patterns for a multiple reflection configura-
tion, consider an infinite channel consisting of
a concave specular surface, a convex specular
surface, and two parallel diffuse surfaces, as
shown in Fig. 5. Only the patterns which lie in
the plane of the cross section and originate at a
point y, on surface 0 and are received at point
y; on surface 3 are considered.

Because the patterns of this example are now
confined to a plane, the f€’s may be ignored.
The vectors required to describe the patterns for
this configuration are

Veh =elxs! — 1] +6[(3 ") +y8° ~ 1]
Ve =elxs! — +e[03") + y8° — 1]
35 = alxt! — 1]+ &[5 1) +¥5°]
e— 1—x?7 ' T+ 605 = ()]
55 = alxp = x5 7] + e[
(3 + 1]

Th=alxg - 7] 4+ 8 [055 1)

_ (xal,i— 1)2 _ 1]
x5 + g [(x5 7

_ (xazc.i— 1)2]

x|
1,3 —

a, i __ a. i
2,2 = ex[ X5~

Np = e[ + 6 1]
a2.i = x[_2x§'i] + gy[+1]

where ¢, and ¢, are unit vectors.

By the relationship given above, the maximum
number of f? forms required to describe all
.patterns is 20. However, pattern (0, 1, 3) and
patterns which result in direct reflections back
to the diffuse surface such as (0, 1, 0), (0, 2, 0),
(3. 1, 3), and (3, 2, 3) have been disregarded.
In addition, the patterns which require a ray
to pass between two points on surface 1, such
as (0, 1, 1), (1. 1, 1), (1, 1, 3), and (1, 1, 2), are
physically impossible. Thus, only eleven func-
tional forms are required.

Substitution of these vectors for those of
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05 T
ezl
04
S | -
e
Q 03
g - i
z 02 |-
%J = I fm—] ;IN=8 =
ol .
VAV % N=4
0 / J f—— | Nzl
{ 2 3 4 5 6 7 8 9 0 1l 12 13 14 15
M=b/a

F1G. 4. View factor to the image of a cylindrical fin.

SURFACE NO. |
2 (0, 5)= 2= (x)2=0

SURFACE NO. 3
0% ya<i; x3=-l

SURFACE NO. O
05}'0 <l xo=1

SURFACE NO. 2
fo(%a: ) 2¥p +1-(x2)2=0

F1G. 5. Convex—concave channel.

equation (11)and expansion yields the functional relationships required to describe all multiple
reflection patterns considered. These are :

a, i, Yya, i a, i, ya,i—1
NT* - V2L N* - Vis

T:,il ' ;’i1,+, “’il , Ti_l =fZD,l,2(xTi_lyxTi,xg’i—1)= lz),l,z(a,b,c)
1 2
a® — 2ab + b*> — 1 2bc — b2 — %2 + 1
- 4b?)4,
{[(b B R [ R T S [ Ny Py 1)2}*}(1 + 459
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Ng’ i, V?,iz Ng’l Va i+1

— D a.i~1 ai yaitly __ ¢D
‘ aé.il lvai,,i2| + IN%," IV’E,G“! S12.1 (x5 » X7, X ) 1.2.1
2ab — b* — a? — | ——2bc+c2+1
= 14 4b%)" ¢
{[(b —a)* + (b* — a® — 1)2]* [(c - b + (¢ - 1)2]*}( +4b%)
Naé,i.vai,iz Nal Va:+1 R ict ) - "
- s — =1 yai i — ,b,
IN‘H ’Va{: ‘N ' ‘Vaz.l;l\ f1.2.2(x1 X7 . X7 ) 1,2,2(0 C)
2ab — b® —a? - 1 b—2bc+c _
— {[(b . a)z + (bz _ a2 _ 1)2]% [(C . b)z 2]‘&}(1 + 4b2) +

Na,i,va.i Nal Va i+1 i
|N°23i| |V§2'f2 +|N g ’V“'+1 =f 222057 L x5 5 = f3 5 5(a bo)

1 p2 2 _ 2
:{ 2ab —a? —b b% — 2bc + ¢ (1 4 db?)

[(b — a) + (b* — a®)*]? i [c = by + (¢ bz)z]*}

N5 '-Vgh + N5 '-V33

N TIVaA] T Ny Ve3
B 2b—b*—a-1 N b? — 2bc + c?

T - D2+ (b2 —a— 12 T [(c - b)? + (2 - b2

D .0 -1 .2y —, D
0.2,2()’?) L X3, X3 )“'fo_z‘z(a.b..c)

}(1 + 4b%)~ %,

i, Yy i @, i, al+1
N3 V§5 N%

IN% | {V“’il+| HVMH = 0 a3 T X Y =11 .5 b, o)
1.2
2ab — b? —a® -1 b2 4+2b+c+1
= : 1+ 4b%)7%,
{[(b—a)2+(b2~a;2—1)2]1‘+ [(1+b)2+(c—b2+1)2]*}( + 45%)

a i, ai, ya.itl
N7'- V32 N3~ V35

+ - — D. (xa.i—l.xa,i m:+1) (a b C)
lNz { |V .2] IN l lva. 1 J2.2.3(x3 7-)3 2 3
2ab — a® — b? b 2+2b+c+1 )
— -
{[(b X L (TR ey s 1)2]*}(1 AT

a i, ya. i . i, aH—l
NT'- V34 N{ ' V4

azz+1 _. D
‘Na{.i' |Vazz,11 + |Nalz 1’ lva.z+1' “fZ 1. S(x Xl . )— 2,1.3((1, b, C)
b* —2ab +a’ — 1 b +2b+c 2)-4
{Ub— P R A (T bzm*} (409

Note that by reciprocity :

1ot b ot e i
SR 22O T X X ) = — 25 (5T L x5 xE T,
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08 ] |
PATTERN NO. | (0,2,3)
1,0- 0.
\ }’o 05
0-06
0049 \
S~ 002 \
o] \\
-0-02 \\
-004
5] 02 04 06 08 10
i,2
Y3
(a)
002 ’ o
PATTERN NO. 3 (0, 2,1, 3)
-004 r§°=0% 02
|
-006 g 04
i : o
& ' 3
-008 s 06
- \i
-010 //. \ o8
-012 -to
) 02 04 06 08 0
r33
(©)

F1G. 6. Relationship between coordinates of source, reflec-
tion, and receiver points for patterns No. 1 through No. 4.
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024 . '"'}f"" T 1r7777j0-5540
|
‘ |
| S
020 : i [ . 105500
\ PATTERN NO 2 (0,1,2,3
018l = | ——-05460
| -
. - -05420 ni—
012 0 %
008 05380
004 ---0:5340
o} i 05300
0 02 04 06 o8 10
r33
(b)
10 - o
\ e e
ol ® C—— () o
/
PATTERN NO. 4 (0,2,2,3)
4,0:05
08 \yo —————— - 02
o7 \ =03
; |
‘ —f-
061~ NOTE: THREE SEPARATE 'mu-w
IMAGE PAIRS, A, B, C,
ARE INVOLVED IN
o8l THIS PATTERN | . T
! | A
o4 — 06
-
.
03 o7
' \
o2 o8
<©
ot 03
\9___ 74
0l -0
o] o2 () 06 o8 I-0
r%3
()]
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The system of simultaneous equations to be

J. AL, PLAMONDON and T. E. HORTON

solved for the first few patterns is:

pattern No. 1 (0, 2, 3)
fo.2306% x5 y3?) =0,
pattern No. 2 (0, 1, 2, 3)
Jo1.2 5% xt 1 x3?) =0,
pattern No. 3 (0, 2, 1, 3)
Jo2 3% x5 x} ) =0
Ja1303 L xp 3 =0
pattern No. 4 (0, 2, 2, 3)
Jo2.205% x5 x5 =0,
Sr2305 L x32% 5% =0,

pattern No. 5(0, 1, 2, 2, 3)
fo1 208 % X7 x3%) =0,
Sr2208 %32 x3%) =0,
J2.2. 3()‘3'2» x§'3, ,Vg'4) =0,
pattern No. 6 (0, 2, 2, 2, 3)
Jo,2.2008 % x5 1, x5%) = 0,
f2.2.2065 1, %52, x5%) = 0,
Ja.23(5 % %53 954 =0,
pattern No. 7 (0, 2, 2, 1, 3)
fo.2.205% x3 1, x32) = 0,
foa a3 x3 % x7%) =0,
frs03 % x40 =
pattern No. 8 (0, 2. 1, 2, 3)
Jo.21 5% x5 x}?) =0
fr12(x3 1 xP 2 x33) =0,
fi2.a(3 2 %5354 =0,
pattern No.9(0, 1,2, 1, 3)

o1,
fia,
f2.1.

9.0 9.1 .9,2y _
200" X7 x3%) =0,
1(x?' » X3 7 Xy

9, 9. ,
3(x2 5 X777 y3

The relationship between the coordinates of
the first four patterns is shown graphically in
Fig. 6. It is interesting to note that pattern No. 4
gives rise to three secondary images.

4. CONCLUSION

Although the above approach allows a
straightforward formulation of the system of
equations describing the multiple reflection
patterns assoctated with a configuration con-
taining curved specular surfaces with a minimum
of geometrical analyses and the computation
procedure is reduced to a familiar form, the
solution of the system of equations and the
computation of the view function and view
factor remain a formidable task. However, the
storage capacity and speed of computation of
the modern electronic digital computer and the
techniques of numerical analysis are equal to the
challenge. These, then, would indicate the feasi-
bility of a view factor program for generalized
curved specular surface configuration.
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Résumé—On présente des expressions mathématiques générales pour (1) le facteur de forme correspondant
seulement & I'image primaire d’une surface vue par une autre surface dans un réflecteur spéculaire non-
plan, et (2) le facteur de forme pour I'image secondaire dans une situation d’images multiples faisant
intervenir des réflecteurs spéculaires non-plans. La notation vectorielle est employée pour présenter les

formules générales qui sont indépendantes d’un systéme spécifique de coordonnées. Les expressions
résultantes sont simples dans leur concept et sont identifiables avec I’expression connue communément
pour le facteur de forme entre des surfaces diffuses. Les formules étendent I'application de la “*‘méthode
des images” a des enceintes contenant des surfaces spéculaires de forme arbitraire. On donne deux

exemples qui illustrent Pemploi des expressions générales.

Zusammenfassung—Allgemeine mathematiche Ausdriicke werden angegeben fiir (1) den Anordnungs-
faktor nur fiir die Primidrabbildung einer Oberfliche gesehen von einer zweiten Oberfliche aus in einem
nichtebenen spiegelnden Reflektor und (2) den Anordnungsfaktor fiir die sekundédre Abbildung im
vielfach abbildenden Fall bei nichtebenen spiegelnden Reflektoren. Die Vektorbezeichnung wird ver-
wendet, um die allgemeinen Formulierungen wiederzugeben, die unabhingig von einem spezifischen
Koordinatensystem sind. Die resultierenden Ausdriicke sind begrifflich einfach und sind vergleichbar mit
den allgemein bekannten Ausdriicken fiir den Anordnungsfaktor zwischen diffus strahlenden Oberflichen.
Die Formulierungen erweitern dic Anwendung der “Abbildungsmethode” auf Verhiltnisse mit spiegelnden
Oberflichen mit beliebiger Topographie. Zwei Beispicele sind angegeben, um die Anwendung der allgem-
einen Ausdriicke zu erldutern.

Annoranua—Iipusegenst ofume MareMaTnyecKue BHIPAMKEHHA, BO-NEPBHX, MJIA YIIOBOTO
ko3(duurenTa TONLKO LA NePBUYHOTO U30OpasKEHUA OXHON NMOBEPXHOCTA C TOYKH 3PEHHA
ApYyTolt HOBEPXHOCTH B HEMIOCKOM 3ePKAJILHOM OTpaMaTese, ¥ BO-BTOPHIX, YIIIOBOro Koaddu-
LHEeHTa B CIyYae MHOMECTBEHHHX M300paskeHHil B HEIIOCKOM 3epKANbHOM OTpaMarese.
O61ye OpMyAMPOBKH AIOTCH B BEKTOPHOM BRIPAHKEHMH U HE 3ABUCHT OT CUCTEME KOODIMHAT.
Honyuennnie BHPaMKeHUA OYeHb MPOCTH M MOI'YT GHTH JIETKO CBETEHH K U3BECTHHLIM BHIparke-
HHUAM [UIA YrI0BOro Koadduigienta mexx1y pacceuBalONIUMU MOBEPXHOCTAMU. I PopMynu-
POBKH I103BOJIAIOT NPHMEHUTh METOJ] «M300parkeHnit» 1A 060JI04eK OTPAKAOIUX MOBEPX-
HOCTeY NpouaBoIbHOI Tonorpaduu. A mumocTpanuy o61UX - BHPAKeHN TPUBOIATCA [BA
puMepa.
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